SST: Real-time End-to-end Monocular 3D Reconstruction via Sparse Spatial-Temporal Guidance

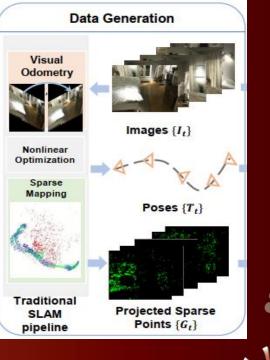
Chenyangguang Zhang, Zhiqiang Lou, Yan Di, Federico Tombari and Xiangyang Ji

Background

- Monocular 3D scene reconstruction: predicting 3D model from consecutive frames, without distance measurements.
- Traditional visual SLAM systems: sparse reconstruction;
- Two-stage deep learning methods: spatial inconsistency.

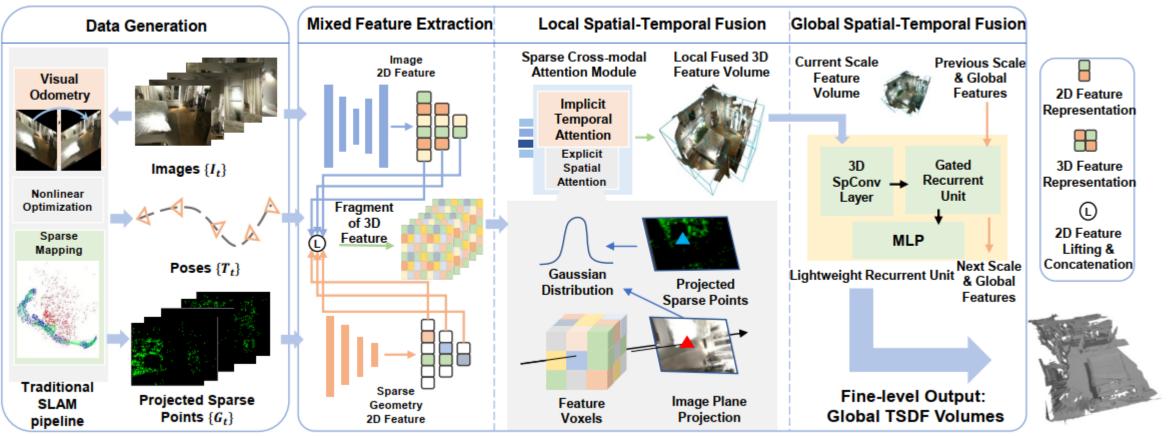
Motivation

- End-to-end methods: directly regress TSDF volumes.
- Over-smoothed results due to insufficient supervision neglecting spatial details. (only GT TSDF with large voxel size)
- Oversimplified feature fusion ignoring temporal cues. (simple average feature fusion)


Our Method

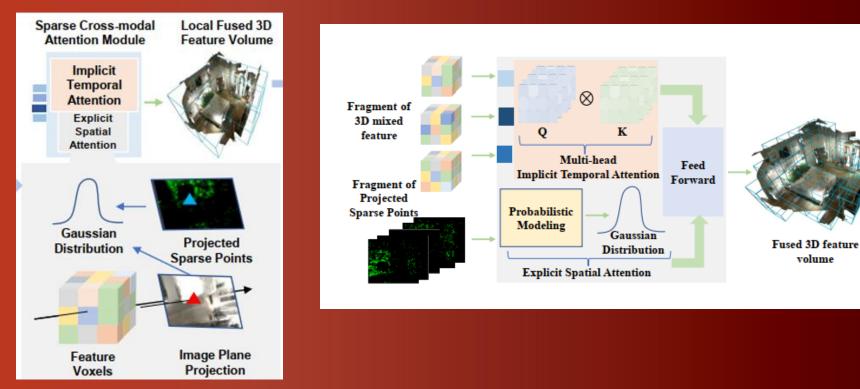
- Over-smoothed results due to insufficient supervision neglecting spatial details.
- -> Introducing sparse depth input a by-product of VSLAM system for free
- Oversimplified feature fusion ignoring temporal cues.
- -> Proposing sparse cross-modal attention mechanism for utilizing spatial-temporal cues

Our Method


- Sparse depth input a by-product of VSLAM system for free:
- Current end-to-end method needs a real-time off-line VSLAM system for generating camera poses.
- Sparse cross-modal attention mechanism:
- Adaptive feature aggregation for color information and sparse point-based geometry priors, distilling more informative cues for accurate reconstruction.

ane Convention & Exhibition Cer

Our Method: Pipeline


SST Network Architecture

Our Method: Local Spatial-Temporal Fusion

 LSTF with sparse cross-modal attention mechanism, enabling both adaptive weighted feature fusion in temporal dimension and channel-wise multi-modal feature interaction for spatial feature fusion.

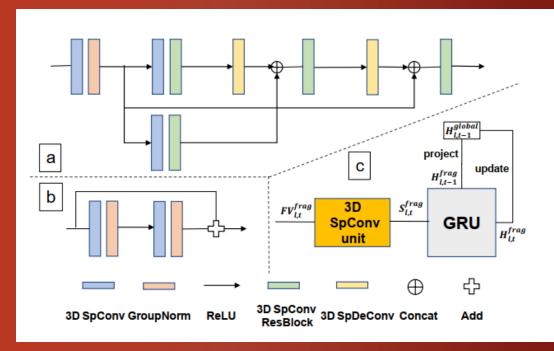
volume

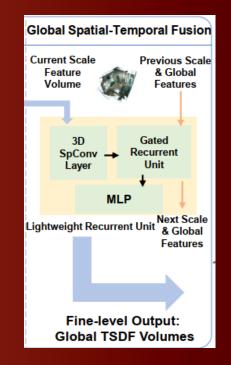
Our Method: Local Spatial-Temporal Fusion

- Implicit Temporal Attention: $\omega_{l,im}$
- Explicit Spatial Attention: $\omega_{l,ex}$

$$A_{in} = \begin{bmatrix} FV_{1,v_i}^{IG}, \cdots, FV_{N,v_i}^{IG} \end{bmatrix}$$

$$Q = W_q A_{in}, \ K = W_k A_{in}, \ V = W_v A_{in}$$


$$\omega_{l,im} = Softmax(QK^T), \ A_{out} = \omega_{l,im} \omega_{l,ex} V$$
(2)


$$\omega_{l,i,t} = \begin{cases} Gauss_{\sigma_{E_t p_{(v_i)}}} (\|SD_t(p_{v_i}) - d_{v_i}\|) & SD_t(p_{v_i}) > = 0\\ 1 & otherwise \end{cases}$$
(3)

Our Method: Global Spatial-Temporal Fusion

- The inference time bottleneck lies in the structure of 3D sparse convolution layers.
- We significantly modify the network structure and reduce the number of parameters, so that to accelerate the whole network at a large margin.

IEEE International Conference on Multimedia and Expo 2023 Brisbane Convention & Exhibition Centre 10-14 July 2023

Results

TABLE I3D GEOMETRY METRICS ON SCANNET.

Method	Comp	Acc	Recall	Prec	F-score	FPS
MVDNet [7]	0.040	0.240	0.831	0.208	0.329	28
GPMVS [16]	0.031	0.879	0.871	0.188	0.304	27
DPSNet [8]	0.045	0.284	0.793	0.223	0.344	4
COLMAP [12]	0.069	0.135	0.634	0.505	0.558	0.4
NeuralRecon [3]	0.138	0.053	0.472	0.687	0.559	47
Ours	0.124	0.053	0.505	0.695	0.584	59
TransFusion [1]	0.082	0.055	0.600	0.728	0.655	7
Atlas [2]	0.076	0.071	0.605	0.675	0.636	4
NeuralRecon [3]	0.075	0.051	0.556	0.706	0.621	<u>47</u>
Ours	0.071	0.050	0.584	<u>0.714</u>	<u>0.643</u>	59

TABLE II2D depth metrics on ScanNet.

Method	Abs.Rel.	Abs.Diff.	Sq.Rel.	RMSE	$\delta < 1.25$
MVDNet [7]	0.098	0.191	0.061	0.293	89.6
GPMVS [16]	0.130	0.239	0.339	0.472	90.6
DPSNet [8]	0.087	0.158	0.035	0.232	92.5
COLMAP [12]	0.137	0.264	0.138	0.502	83.4
Atlas [2]	0.065	0.123	0.045	0.251	93.6
NeuralRecon [3]	0.065	0.099	0.034	0.197	93.7
Ours	0.060	0.092	0.034	0.185	94.0

TABLE III3D metrics on 7-Scenes.

Method	Comp	Acc	Recall	Prec	F-score	FPS
NeuralRecon [3]	0.228	0.100	0.228	0.389	0.282	47
Ours	0.225	0.104	0.242	0.392	0.298	59

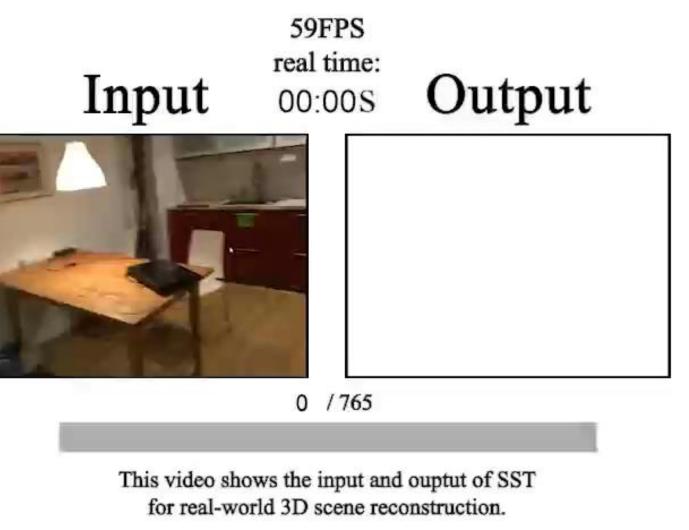
TABLE IV

LSTF ,FE AND GSTF ARCHITECTURE ABLATIONS ON SCANNET UNDER 3D metrics along with the top block of Tab. I.

	SCAM	Geometry Priors	LWRU	Recall	Prec	F-score	FPS
a	×	×	×	0.472	0.687	0.559	47
b	\checkmark	×	×	0.494	0.690	0.574	41
с	\checkmark	×	\checkmark	0.495	0.695	0.576	62
d	\checkmark	\checkmark	×	0.496	0.695	0.579	38
e	\checkmark	\checkmark	\checkmark	0.505	0.695	0.584	59

IEEE International Conference on Multimedia and Expo 2023 Brisbane Convention & Exhibition Centre 10-14 July 2023

Results


Ours

1

60 FPS

8

Demo Video

IEEE International Conference on Multimedia and Expo 2023

Brisbane Convention & Exhibition Centre 10-14 July 2023

Thanks for you

www.2023.ieeeicme.org

zcyg22@mails.tsinghua.edu.cn